

Exploring system efficiency in smart homes: early experiences from a smart home and digital twin in a controlled lab environment

Georgios Foskolos and Peter Bennich
The Swedish Energy Agency

Presented by Nils Borg, Borg&Co

EEDAL 2024-10-08

Agenda

- Background
- The smart home
 - Set-up
 - Example of measurements
- The Digital twin
- Initial conclusions
- Future work

Testlab – Smart Home lab

Purpose

- Interoperability issues?
 - Can any smart hub be used with the appliances in the smart home (and vice versa)
- What are the energy and power requirements of connected products?
 - o Compare the individual stand-by use of products with the stand-by use of the system.
- How do products behave within a system? Are there irregularities or disturbances that are not considered and can lead to undesirable behavior or energy use?
 - Create and run simulations of different use cases that can be run for different settings and systems.
- Which parts of the system or use case require the most energy/power? Are there critical areas suitable for control?
 - Create and run simulations of different use cases that can be run for different setups and systems.

Purpose - cont

- How much, where and when is data sent between products and with other parties?
- Is the amount of data required reasonable in relation to the function?
- Can the results be used as input for standardisation and policy?
- At this early stage Proof of concept:
 - o Can we measure traffic between devices?
 - o Can we measure traffic to the outside?
 - Can we measure the energy/power of several devices simultaneously?

Smart Home lab measurements

Test of Homey

Homey Pro - the world's most advanced smart home hub.

Homey: installation sequence

Connecting Homey and Washing machine

Homey and TV

Booting Homey Pro and added TV. Quick and easy to add the TV. Turn on, off and on TV and adjust volume via Homey.

Homey and Washing machine

ECO - 40-60 degrees together with Homey - no control can be done, but you can see the status

- Laundry in progress, remaining time and progress (%).

The machine detects how well the machine is filled and then tells you how long the program will take

Test of Ikea Dirigera

DIRIGERA hub for smart products, white smart - IKEA Sweden

Dirigera: Installation and control of lamps

1st lamp has already been added. Added a 2nd lamp so it can also be controlled with the Ikea Smart Home app. The light turns on and off according to instructions and is easily found! Control, dimming turning on/off, changing color.

Test of Home assistent

Home Assistant (home-assistant.io)

Home assistant: Installation sequence

Start-up, updates, restarts

Test of Google Nest Hub Max

Introducing Google Nest Hub Max - Google Nest Help

Smart Home lab – the basis of a digital twin

- A virtual copy of a physical object or system and its associated environment
- A possibility to simulate and visualize operational scenarios
- Phase 1: Creating the simulation environment (Python)
 - Set up an object-oriented environment with the aim of mimicking the Smart Home
 - The work package includes the creation of a scalable object-oriented solution
- Phase 2: Strategies for consumption smoothing
 - Development of strategies to reduce power peaks and flattening the consumption curve
 - Simulation with scheduling

Initial conclusions

- Smart Home:
 - Methodology:
 - A systematic way of testing combinations of a smart hub and appliances connected to it, seems to work with respect to power and energy
 - Time resolution has to be chosen carefully (to capture fast processes)
 - Measurements of the data flow remains to be explored
 - Results
 - Early results indicate that the energy use is relatively low for the actual connectivity

 – or is it? To be discussed!
- Digital twin:
 - Early stage mirroring the Smart home

Future work

- Smart home
 - Explore data traffic related to instructions and power use
 - Connecting more devices
- Smart Home and Digital Twin working together
 - Phase 3 (next slide)

Phase 3 and beyond...

Smart Home lab

- Measurements at Testlab
- Load curves from external labs and home environments

Simulate behavior and analyze aggregation

Simulate multiple houses, multiple apartments, streets, city...

 New loads: batteries, PV, EV...measurement data from manufacturers, external tests

- Impact on the electricity grid
- Flex
- Large-scale scenarios

Georgios Foskolos
Technical advisor at Testlab

georgios.foskolos@energimyndigheten.se

Visit us on www.energimyndigheten.se/en

