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1. Context
Current Status of Energy Mix and Transition Targets

Fig. 1-1 Global primary energy consumption by 

source (1800-2023)*

Fig. 1-2 Per capita primary energy consumption by 

source (2023)*

*Statistical Review of World Energy, Energy Institute 2024

Global primary energy consumption hit a record high for the second year, driven by non-OECD

countries, where Fossil Fuels make up 84% of their energy mix and lead growth.

2023 Energy Mix 
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1. Context
Current Status of Energy Mix and Transition Targets

Fig. 1-3 Energy transition landscape 

Global Energy Transition Targets

➢ By 2030, annual global clean energy

investment must reach $4 trillion.

➢ By 2040, coal and oil plants without

emissions reductions will be phased

out, achieving net-zero power

generation.

➢ By 2050, Renewable Energy will

dominate, with solar as the largest

source.

2030

2040

2050
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1. Context
Electricity Markets are Central to Decarbonising The Power Sector 

Large 

Factories

Mid-sized

Factories

Small 
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Full Market 

Liberalization
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⚫ Retail market had been gradually liberalized since 2000.

⚫ Since April 2016, retail electricity market in Japan has been 

fully opened up for competition. But regulated tariffs by GEUs 

are still exist in low voltage consumer for consumer protection.

Fig. 1-4 Status of electricity markets around the world in 2022* Fig. 1-5 History of electricity market development in Japan

⚫ Currently, 50% of global electricity is generated in

liberalized markets, expected to rise to 76% as China

implements its power markets.

⚫ Decarbonization efforts in the short and medium term

will largely depend on these market-driven systems to

reduce costs and attract investment.

*Steering Electricity  Markets Towards a Rapid  Decarbonisation, IEA 2022
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1. Context
Japan Electricity Trading Mechanism After Full Liberalization

Day-ahead Market Intraday MarketPower Supply

Thermal Power Plant

Solar Power Plant

Wind Power Plant

Hydro Power Plant

Japan’s day-ahead market sets electricity prices

one day in advance based on demand forecasts.

The intraday market allows real-time adjustments

on the day of supply to manage forecast deviations.

Transmission&distributed 

System Operation

Demand Sides

Industrial 

consumers&prosumer

Residential

consumers&prosumer

Commercial

consumers&prosumer

Energy Sharing 

Business Model

Prosumers

Consumers

Peer to Peer 

Trading

Japan Electric Power Exchange (JEPX) was founded in 2003 as Japan’s physical wholesale spot market for electricity. Trading volumes of

electricity until 2016 were very small, representing approximately 2% of Japan’s generation supply. This changed dramatically starting in 2016.

Fig. 1-6 Overview of Japan electricity trading mechanism after full liberalization
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In practice, accurate forecasting greatly benefits electricity market participants. A company, producer, or

consumer that can reasonably predict fluctuating electricity prices can reduce trading risks and maximize

profits by adjusting bidding strategies and production or consumption schedules in the day-ahead market.

1. Context
Purpose of This Study

Practical significance of this study:

Limitations of existing methods:

Contributions of this study:

Comparison Criteria LSTM PSO-SVM ARIMA Random Forest

Prediction Accuracy ✘

Convergence Speed ✘

Spatiotemporal Feature Handling ✘ ✘ ✘

Hyperparameter Optimization Efficiency ✘ ✘ ✘

Robustness to Market Volatility ✘ ✘

Long-term consideration ✘ ✘ ✘ ✘

Comparison of the existing Forecasting Models
➢ Models often lack robustness despite high accuracy.

➢ Many models adapt slowly to new data.

➢ Spatiotemporal features are not well captured.

➢ Long-term forecasting is not well addressed.

➢ The BO-CNN-LSTM model effectively balances prediction accuracy and robustness to market fluctuations.

➢ The model quickly adapts to data changes while capturing complex spatiotemporal relationships.

➢ Fourier series theory is used to forecast long-term electricity price trends, extending beyond short-term horizons.

➢ SHAP provides insights into the model's decision-making, offering greater transparency in machine learning predictions.
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2. Method

The Development of Machine Learning (ML)

1980-1990 1990-2000 2000-2010 2010-2024

Based on statistical methods

Predictive models initially

used mainly statistics-based

methods such as time series

analysis and regression

analysis. Although these

methods are relatively simple,

they still have some utility in

short - and medium-term

forecasting.

Introducing machine learning

With the improvement of

computing power and the

increase of data volume,

machine learning methods are

gradually introduced into the

field of predictive models.

Artificial Neural Networks

(ANN) became a popular

method to automatically learn

load patterns from data.

Optimization of machine 

learning methods

Machine learning methods

developed further during this

period, and methods such as

Support Vector Machines

(SVM) were gradually applied

to data prediction. At the same

time, more optimization and

improvement of the model are

carried out to improve the

prediction performance.

Rise of deep learning 

With the rise of deep learning

techniques, especially the

application of Recurrent

Neural Networks (RNN),

Convolutional Neural

Networks (CNN), and Long

and Short Term Memory

Networks (LSTM). At the

same time, this period also

began to use larger data sets

and more powerful computing

resources.

Integrated approach and 

real-time

Since 2020, forecasting

technology has evolved with

trends in deep learning,

multi-source data fusion, and

model integration.

More studies focuse on

uncertainty modeling, real-

time, adaptive enhancements,

and renewable energy

integration. These advances

aim to improve accuracy,

adaptability, and real-time

performance in energy

management and power

systems.

2024-

Mid-stageInitial stage Current-stage Future outlook 
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2. Method
Convolutional Neural Network (CNN)

Convolutional Neural Network (CNN) is a deep learning model that automatically detects patterns in data, like images or time series. It uses layers

of filters to identify features and builds them up to understand complex structures, making it effective for recognizing sequences and trends with

minimal pre-processing.

X(i)=[xt−k+1 ​, xt−k+2​, … , xt ]

1. Input Data

Time series data is split

into small sequences

(windows) as input for

the CNN. Each window

of size 𝑘 looks like:

2. Convolution Layer

The convolution layer extracts

features from each window by

applying a filter, which moves

along the sequence.

ht​ =σ(∑k
j=1 ​ wj ⋅ xt−j+1​ +b) pt​=max(ht ​, ht+1 ​, … , ht+m−1 ​)

3. Pooling Layer

The pooling layer reduces

the size of the feature

maps, keeping the

important information.

y^​=σ ( ∑n​
i=1 wi

′​⋅pi ​+b′ )

4. Fully Connected

Layer

The fully connected

layer make the final

prediction.

Fig. 2-1 Framework of Convolutional Neural Network (CNN)

Fig. 2-2 Animated diagram of CNN in processing

Note:

The core of convolution is a process of

feature extraction and information

compression, where sliding filters are

applied to input data to capture local

patterns.
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2. Method
Long Short-Term Memory (LSTM)

Fig. 2-3 Framework of Long Short-Term Memory (LSTM)

LSTM (Long Short-Term Memory) is a deep learning model commonly used for processing sequential data. Compared to traditional RNNs

(Recurrent Neural Networks), LSTM introduces three gates (input gate, forget gate, and output gate, as shown in the figure below) and a cell state.

These mechanisms enable LSTM to better capture long-term dependencies in sequences.

Forget Gate

𝒇𝒕=𝝈 𝑾𝒇 𝒉𝒕−𝟏, 𝒙𝒕 + 𝒃𝒇

Cell State

𝑪𝒕=𝒇𝒕𝑪𝒕−𝟏 + 𝒊𝒕𝑪𝒕
′

Input Gate

𝒊𝒕=𝝈 𝑾𝒊 𝒉𝒕−𝟏, 𝒙𝒕 + 𝒃𝒊

𝑪𝒕
′=𝒕𝒂𝒏𝒉 𝑾𝑪 𝒉𝒕−𝟏, 𝒙𝒕 + 𝒃𝑪

𝒐𝒕=𝝈 𝑾𝟎 𝒉𝒕−𝟏, 𝒙𝒕 + 𝒃𝟎

𝒉𝒕=𝒐𝒕 𝒕𝒂𝒏𝒉 𝑪𝒕

Output Gate Fig. 2-4 Animated diagram of LSTM in processing

① Forget Gate: ② Input Gate:

③ Cell State:④ Output Gate:

Advantages of LSTM:

➢ Remembers important info longer.

➢ Filters out unnecessary data.

➢ Works great for time-based tasks.
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2. Method
Bayesian Optimization (BO) and Evaluation Criteria

𝑹𝑴𝑺𝑬 =
𝟏

𝒎
෍

𝒊=𝟏

𝒎

𝒚𝒊 − 𝒚𝒑𝒓𝒆
𝟐

𝑴𝑨𝑷𝑬 =
𝟏

𝒎
෍

𝒊=𝟏

𝒎 𝒚𝒊 − 𝒚𝒑𝒓𝒆

𝒚𝒊
× 𝟏𝟎𝟎

𝑹𝟐 = 𝟏 −
σ𝒊=𝟏
𝒎 𝒚𝒊 − 𝒚𝒑𝒓𝒆

𝟐

σ𝒊=𝟏
𝒎 𝒚𝒊 − ഥ𝒚 𝟐

BO algorithm for hyperparameter tuning.

Input: f: The objective function, Θ: Hyperparameter space, N: Number of

iterations, GP: Gaussian process surrogate model, EI: Expected improvement

acquisition function, ΔEImin: Threshold for minimum improvement, D: Dataset.

Output: θbest: The best-performing hyperparameter set.

1. Initialize: EIprev = ∞

2. for n = 1 to N do

3. θn = argmax EI(Θ, GP, D)

4. yn = f (θn)

5. D = D∪{(θn, yn )}

6. Update GP using D

7. EIcurr = EI(θn|GP,D)

8. ΔEI = EIprev - EIcurr

9. if ΔEI ≤ ΔEImin then

10. θbest, ybest = min{ yn | (θn, yn ) ∈ D}

11. GPfinal = GP

12. end if

13. EIprev = EIcurr

14. end for

15. Update Θ

Table. 2-1 BO algorithm for hyperparameter tuning

𝒇𝜣=𝒎𝒊𝒏 𝒕𝒓𝒂𝒊𝒏𝒊𝒏𝒈 𝑹𝑴𝑺𝑬+ 𝒗𝒂𝒍𝒊𝒅𝒂𝒕𝒊𝒐𝒏 𝑹𝑴𝑺𝑬
Objective function:

The Bayesian Optimization (BO) algorithm is less prone to

getting trapped in local optima, making it a reliable and faster

method for adjusting hyperparameters in machine learning,

particularly when the cost of evaluating the objective function is

high or the function is complex to handle.

Bayesian Optimization Model Three Evaluation Criteria

To evaluate the predictive performance of the proposed model, three

performance metrics were selected: Root Mean Square Error

(RMSE), Mean Absolute Percentage Error (MAPE), and the

coefficient of determination, R2. MAPE represents the average

absolute prediction error across m samples. RMSE is the square root

of the mean squared error for m samples. The coefficient of

determination, R2, is used to assess the accuracy of the predictions.

These metrics are mathematically defined as follows:
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2. Method
SHapley Additive exPlanations (SHAP)

Output = 0.4

Base rate = 0.1

Model

?

+4

-3

+1

+1

Output = 0.4

Base rate = 0.1

Demand

Generation

Fuel price

Carbon price

Demand

Generation

Fuel price

Carbon price

Explanation

SHAP (SHapley Additive exPlanations) is a method used to explain machine learning model predictions. It shows how each input feature

contributes to the model’s output.

What is SHAP?

Core Idea of SHAP Values:

SHAP values are based on Shapley values from cooperative game theory, calculating each feature’s contribution across all possible

combinations. It’s like analyzing each feature’s contribution to the overall performance.

Fig. 2-5 The principle of SHAP

SHAP Main Formulas:

➢ Transparency: SHAP explains black-

box models, revealing why the model

made a certain decision.

➢ Fairness: Every feature’s contribution

is averaged across all combinations,

ensuring a fair calculation.

Advantages of SHAP:
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2. Method
Address Long-term and Uncertain Issues

Pt​ =a0+​∑n=1 (an​ cos(2πnt​/T)+bn​sin(2πnt​/T))+g(Xt ​ )

Identify Annual Price Drivers

⚫ Economic factors

⚫ Supply and demand factors

⚫ Environmental factors

Construct Data-Driven Models

Fit future annual electricity prices using Fourier Series

Introduce Virtual Factors for Disturbance Simulation

⚫ Add virtual factors to the model to simulate policy 

changes and market uncertainties.

⚫ Adjust price drivers based on disturbance coefficients

Predict Hourly Data Within the Year by BO-CNN-LSTM

Introduce Virtual Factors for Disturbance Simulation

⚫ Combine annual trends with hourly forecasts.

⚫ Use Empirical Interval Prediction to define uncertainty.

1

2

3

4

5

Fig. 2-6 Flowchart depicting the solution process for the long-term issues

Fig. 2-7 Past annual price drivers trends. (2016-2021)

10 Annual 

Price Drivers 

were chosen.
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Fig. 2-8 Future annual price drivers trends. (Demand)

Past (2016-2021)

Future (~2050)
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2. Method
Overview of The Proposed Forecasting Model  

Fig. 2-9 Overview of the proposed forecasting model 

Input layer Convolutional layer Pooling layer Flatten layer LSTM layer Fully connected layer Output layer

Price driving factors

Historical data

trend

seasonal

daily

𝑔1,1
𝑃𝑉 ⋯ 𝑔1,𝑡

𝑃𝑉

⋮ ⋱ ⋮
𝑔𝑦,1
𝑃𝑉 ⋯ 𝑔𝑦,𝑡

𝑃𝑉

𝑔1,1
𝐶𝑜𝑎𝑙 ⋯ 𝑔1,𝑡

𝐶𝑜𝑎𝑙

⋮ ⋱ ⋮
𝑔𝑘,1
𝐶𝑜𝑎𝑙 ⋯ 𝑔𝑘,𝑡

𝐶𝑜𝑎𝑙

Intra year driving factors:

Annual driving factors:

𝐷1,1 ⋯ 𝐷1,𝑡
⋮ ⋱ ⋮

𝐷𝑦,1 ⋯ 𝑔𝑦,𝑡

⋯

𝑔1,1
𝑊𝑖𝑛𝑑 ⋯ 𝑔1,𝑡

𝑊𝑖𝑛𝑑

⋮ ⋱ ⋮
𝑔𝑦,1
𝑊𝑖𝑛𝑑 ⋯ 𝑔𝑦,𝑡

𝑊𝑖𝑛𝑑

⋯

𝑃𝑟𝑖𝑐𝑒2023
𝐶𝑜𝑎𝑙 ⋯𝑃𝑟𝑖𝑐𝑒2050

𝐶𝑜𝑎𝑙

𝐺2023
𝐶𝑜𝑎𝑙 ⋯𝐺2050

𝐶𝑜𝑎𝑙

𝑅𝐸𝐶𝑠2023⋯𝑅𝐸𝐶𝑠2050

Economic factor:

Supply  factors:

Environmental factor:

(64×24×8)

(64×22×32)

Parameter Value

Learning Rate 0.001

Convolutional 3

Kernel Size 5x5

Pooling Size 3x3

LSTM Layers 3

Hidden Units 100

Batch Size 64

Epochs 300

Regularization 0.001

Initial Points 5

Iterations 30

Exploration 0.5

Table. 2-2 Parameters settings

(64×20×64)

(64×18×128) (64×9×128) (64×1152)

σ
Forgetting gateft

it

ෝ𝑐𝑡

σ

tanh

tanh

σ
O
t

Input gate

Output gate

ht-1
ct-1

ht

ht

ht-1

ht+1

LSTM

LSTM

ct

(64×9×100) (64×50) (64×1)
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3. Results and discussion
Case introduction and data sourses

Fig. 3-2 Spot market price in Kyushu. (2006-2022)

Fig. 3-1 Encompassing all of Japan-The Ten Electric 

Power Companies by Service Areas

Description Reference

Historical price data 

Spot price (Kyushu 2006-2022) JEPX, 2023

Price driving factors

1. Intra year driving factors

Demand ISEP, 2024

Power generation ISEP, 2024

2. Annual driving factors

Supply  factors REI, 2021

Economic factors REI, 2021

Environmental factors NPN, 2023

Table. 3-1 Data sourses. 

In Japan, Nine electric power companies

(Except Okinawa) have provided their utility

services as a regional monopoly. JEPX was

only 1.5% to total generation in 2016.

Notebly, by 2020, increased access to

infrastructure aimed to lower costs for suppliers.

We selected 8 Intra year price driving

factors (RES generation, Demand, etc)

and 10 Annual driving factors (Fossil

fuel prices, RES Introduction, etc) as

features of the forecasting model.

The 2011 Fukushima nuclear disaster reshaped

Japan's energy landscape. In 2021, a severe

cold snap spiked electricity demand, depleted

LNG reserves, and pushed prices above 250

JPY/kWh.

Case study JEPX Kyushu electricity spot market (2006-2022)

Price drivers Energy prices, Polices, Generation and Demand
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3. Results and discussion
Comparison of the predictive performance of the three models. 

Fig. 3-4 Comparison of three model training set for different epochs. 

(a) 1000 epochs; (b) 300 epochs.

Fig. 3-3 The mode of data input.

BO-CNN-LSTM PSO-SVM LSTM

RMSE 7.31 10.49 13.33

MAPE 17.53% 25.17% 35.26%

R2 0.69 0.53 0.46

Table. 3-2 Comparison of the predictive performance of the three models. 
8 Intra year price driving factors Forecast target

T
im

e 
se

ri
es

 (
h

o
u

rl
y
)

(a) (b)

◆ To validate the accuracy of our model, we compared it against two other prediction models: a single LSTM model and a Particle

Swarm Optimization Support Vector Machine (PSO-SVM) model.

◆ The BO-CNN-LSTM model shows superior performance in both convergence speed and prediction accuracy compared to the single

LSTM and PSO-SVM models.
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3. Results and discussion
Comparison Analysis of Seasonal Forecast Results

Summer Mid-season Winter

B
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N
-L

S
T

M
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S
O
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M
L

S
T

M

Fig. 3-6  Accuracy evaluation using different methods.

Fig. 3-5 Seasonal electricity price distribution.

Summer shows the poorest model prediction

performance. This is because, from a time series

perspective, it involves complex, nested two-

dimensional variations. Electricity prices in

summer often display more extreme values,

making it difficult for PSO-SVM and LSTM

models to adapt to these fluctuations.

Extreme values
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3. Results and discussion
Comparison Analysis of Three Models

Fig. 3-7 Accuracy evaluation using different methods. (A summer week)

The BO-CNN-LSTM model accurately captures patterns in complex scenarios, showing strong reliability. It responds quickly to local

changes, which helps handle unexpected events. This is because CNN-LSTM has excellent memory capabilities. While traditional

LSTM models may struggle with long sequences, the CNN-LSTM uses flexible convolutional layers to adapt to different scales of data,

making it more effective for complex sequences.

LSTM has difficulty capturing 

irregular features
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3. Results and discussion
SHAP Features Explanation Analysis

Fig. 3-8 SHAP values summary plot

Fig. 3-9 SHAP value impact on model output

Fig. 3-10 Feature importance

◆ Red represents high values and blue low values. Eg.

fossil fuel generation are positively correlated, meaning

higher fossil fuel prices push up electricity prices.

◆ Fossil fuels and demand have the most significant

impact on hourly price fluctuations, indicated by their

larger SHAP values.
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3. Results and discussion
SHAP Features Explanation Analysis

Fig. 3-11 Features dependence plot

(a) Demand vs Fossil fuels (b) Solar PV vs Demands

(c) Biomass vs

Fossil fuels

(d) Wind vs Demand

Five key features were selected for

pairwise dependency analysis:

Demand, Fossil fuels generation,

Solar PV, Wind and Biomass.

◆ There is a strong positive

correlation between demand and

fossil fuels power generation.

◆ Higher values of solar PV

generation lead to a slight decrease

in electricity prices. As biomass

power generation increases and

thermal power decreases, the

market price will significantly

drop.

◆ For wind power generation, an

increase in wind power tends to

lower electricity prices, but rising

demand can drive prices back up.
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3. Results and discussion
SHAP Features Explanation Analysis

Fig. 3-13 Interaction ValuesFig. 3-12 Interaction Values Heatmap

◆ Renewable energy interactions also exist but are less impactful in short-term.

◆ The effects of thermal power generation and demand are significant throughout in the forecasting process.
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3. Results and discussion
Long-term Forecast Results

Fig. 3-14 Pearson correlation coefficients of annual 

electricity prices.

Fig. 3-15 Long-term forecasting based on a data-

driven approach

◆ Most annual price drivers factors show a positive correlation with annual electricity prices. Fossil fuel prices show the highest

correlation with annual electricity prices, while electricity demand showed a negative correlation.

◆ After 2030, with more renewables and fewer thermal power plants, market prices are expected to decline and stabilize. Any price

increase from renewables will be far smaller than that caused by fossil fuels.
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4. Conclusions
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4. Conclusions

In this study, we developed a BO-CNN-LSTM model and a data-driven approach to forecast the spot market electricity prices for

residential prosumers in Japan, considering key energy policy impact factors. The model integrates convolutional operations within a

traditional LSTM structure and leverages Bayesian optimization for efficient hyperparameter tuning, enhancing both prediction

accuracy and long-term forecasting capabilities. We also focus on explaining the role of characteristic variables in machine learning

model prediction. The main conclusions are as follows:

➢ The BO-CNN-LSTM model demonstrates superior predictive accuracy and convergence speed compared to traditional

models. It achieves up to a 45.4% reduction in RMSE and a 50.6% decrease in MAPE over the LSTM model, and a 7.5%

improvement in RMSE compared to the PSO-SVM model. The model's R²value is 22.6% higher than that of LSTM and 1.5%

higher than PSO-SVM, indicating a closer alignment with market trends.

➢ SHAP values provide an interpretable breakdown of the model's predictions, identifying key drivers demand and fossil fuel

generation as major contributors to market price fluctuations. This transparent approach to feature importance helps validate

the model’s outputs and offers deeper insights into market dynamics.

➢ Long-term forecasts indicate significant price volatility around the year 2030, corresponding to climate policy milestones in

Japan. The energy supply structure, particularly changes driven by renewables (RES), notably influences market prices. The

introduction of more RES stabilizes market fluctuations, and the forecast suggests a decline in median prices by 2050 due to the

maturity of renewable technologies and energy storage, steering the market towards greater stability and alignment with

decarbonization goals.
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5. Limatations and prospect
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5. Limatations and prospect
Research Limatations

➢ The model heavily relies on the quality of historical data, and its stability still requires

further improvement.

➢ Our study focuses on a single electricity market, which may limit its scope. Examining

interactions between multiple markets could reveal additional price-driving factors, offering

an interesting area for future research.

➢ The long-term price evolution is based on a series of scenario assumptions. While we provide

a range of future price variations using a data-driven model with empirical interval prediction,

extreme events could significantly impact these results.
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5. Limatations and prospect
Current research contributions and future research directions

Title:

Mitigating long-term financial risk for large customers via a hybrid procurement strategy considering power 

purchase agreements

Energy

30
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5. Limatations and prospect
Current research contributions and future research directions

Title:

Urban-Scale Power Decarbonization Using a Modified Power Purchase Agreements Framework Based on 

Markowitz Mean-Variance Theory

Graphical abstractSustainable Cities and Society
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5. Limatations and prospect
Current research contributions and future research directions

Future research directions —— Multi-agent deep reinforcement learning (MADRL)

MADRL is a method where multiple intelligent agents learn to make decisions by interacting with their

environment and receiving feedback. It's like teaching a group of robots to cooperate and optimize tasks

by learning from their successes and mistakes. In smart energy communities, MADRL helps manage

energy use efficiently by allowing systems to learn and adapt over time, reducing costs and improving

performance.

The framework of MADRL

MADRL used in smart energy communities 
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Thanks for listening !
ご清聴ありがとう
ございました。
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