

EEDAL'24, Kitakyushu, Japan, 7-9 October 2024 Common goals, but differentiated pathways – findings from a comparative study of policies for energy efficiency in residential buildings in Germany/EU and Japan

Stefan Thomas, Lotte Nawothnig, Fiona Bunge *Wuppertal Institute (WI)*

Toshiyuki Kudo, Naoko Doi & Toshiya Okamura Institute of Energy Economics Japan (IEEJ)

Manfred Rauschen, Sascha Kunstmann, Jan Karwatzki, Jonas Rütter, Thomas Rühle Öko-Zentrum (ÖZ)

Thomas et al: Comparing buildings policies Germany&Japan

1. The GJETC

- 2. Building energy use in comparison
- 3. Policies and measures in comparison
- 4. Potential for cooperation and further research needs

Global think tank for sustainable development, owned by federal state of NRW

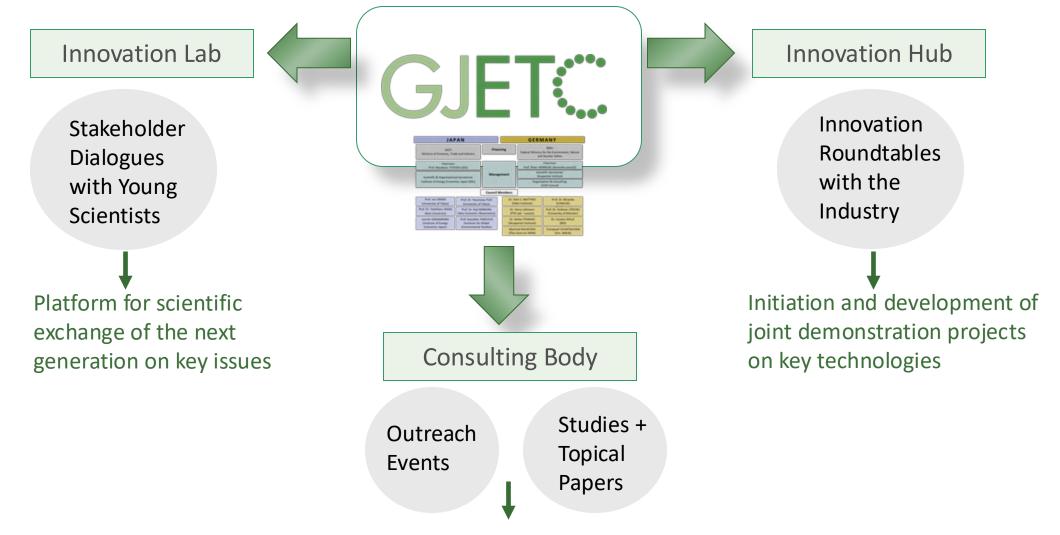
Founded: 1991

Around 300 employees,

4 Research Divisions:

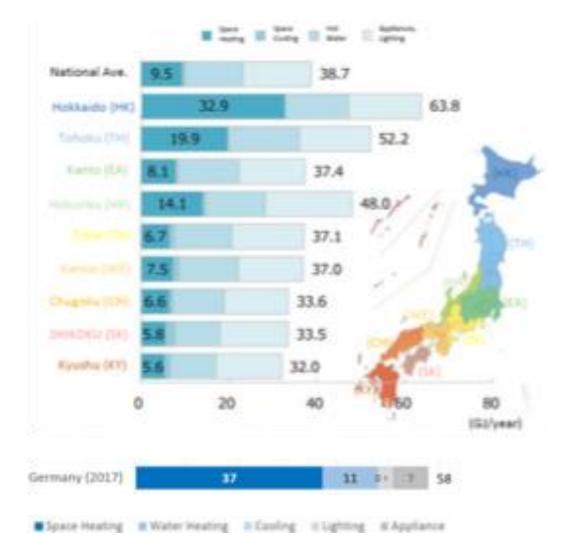
- Future Energy and Industry Systems
- Energy, Transport and Climate Policy
- Sustainable Production and Consumption
- Circular Economy

GJETC at a Glance



A role model for international cooperation on climate and environmental issues since 2016 Wuppertal Institute/ECOS and Institute of Energy Economics, Japan

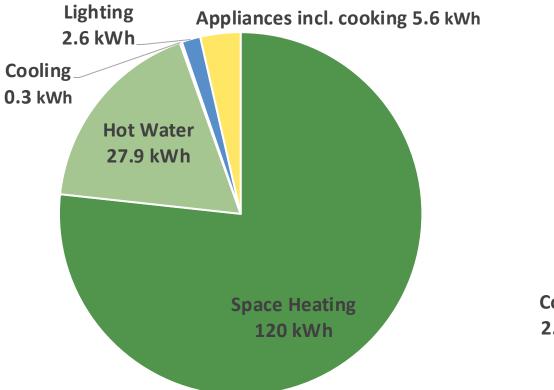
Concept and Functions



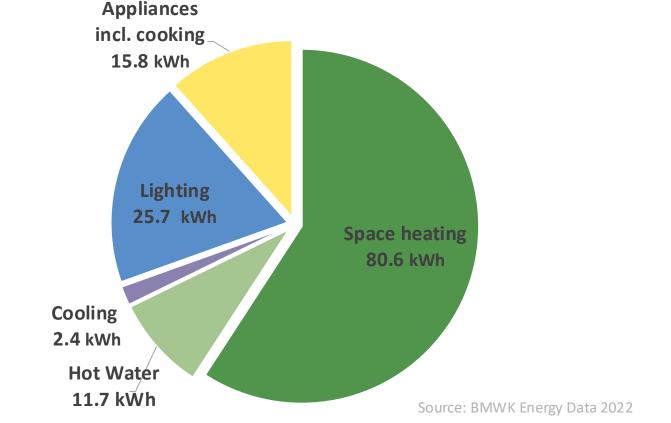
Building energy consumption

Residential energy consumption per m² by end use

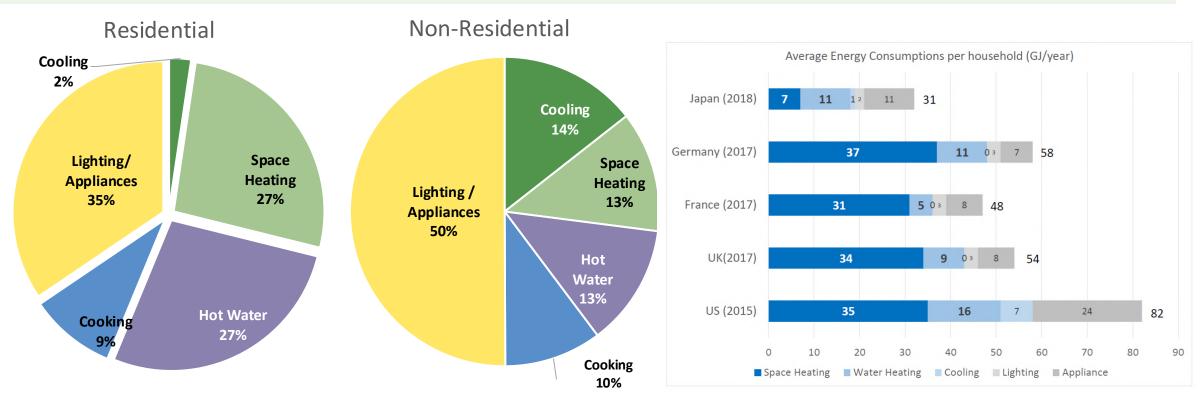
Climate in Germany does not vary much within the country


Sources, for Japan: MLIT, Jyukankyo Research Institute (2018) ; for Germany: Nakagami, H. (2020)

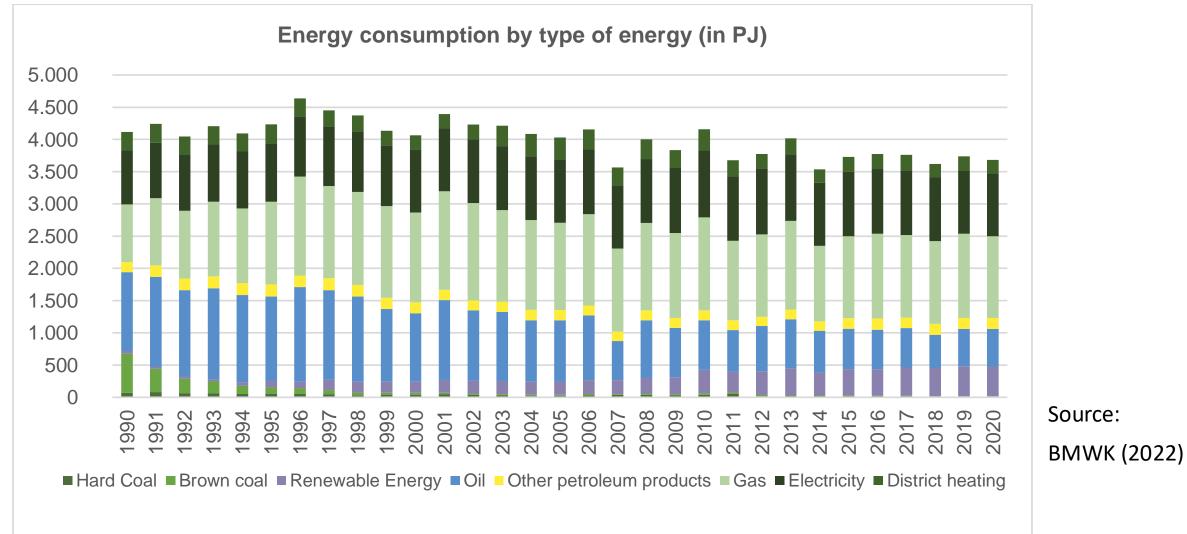
Country-specific characteristics of the building stock


Energy intensity in German (non-)residential buildings

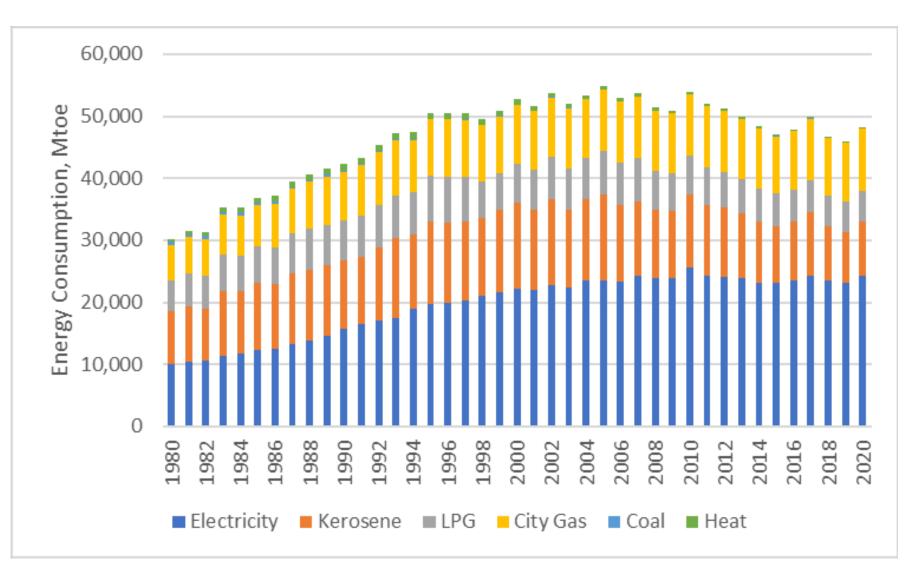
kWh/m²/2020 (residential buildings)


kWh/m²/2020 (non-residential buildings)

Country-specific characteristics of the building stock Energy intensity and consumption in Japan



- By energy use, Major in heating for room and water in residential sector and in lighting/appliances in Nonresidential sector. Growing in lighting/Appliances growing in resident sector, driven mainly by increasing buildings and ownership of appliances.
- By energy type, the proportion of electricity high due to more prevalent home appliances. Subsequent increase in electricity prices and growing environmental awareness leading increased use of energy-efficient appliances.



Energy sources in Germany (incl. non-residential)

Energy sources in Japan (residential buildings)

Source: BMWK (2022)

Trends in energy efficiency retrofits and renewable energies

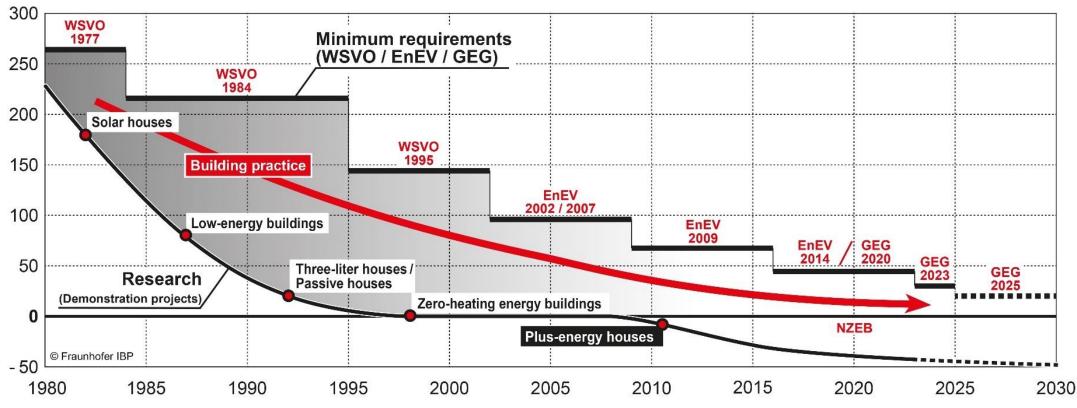
Renewable Energy in Building Efficiency Standards

Housing Retrofits

Germany	Japan	Germany Japan
German Building Code soon to require at least 65% renewable energies in newly installed heating (from 2026/28). Some federal states already mandate the installation of photovoltaic systems in new build. Recent trend: 'balcony solar' (one or two panels of 300-400W per dwelling in multi-family houses), now permitted without landlord consent	Local municipals are leading the deployment of renewables. Tokyo metro government and Kyoto City are implementing mandatory roof-top PV ordinance in new constructions.	Although German building EE policy focuses renovation, with financial support (subsidies/grants/low-rate loans) and professional advice, EE renovation rates remain around 1%/yr.Most residents exchange a room air conditioning and a hot water boiler in a 10-15 years cycle.Energy cost savings and better market valuation with the efficiency labeling system can recover retrofit investments in less than twenty years.Most residents exchange a room air conditioning and a hot water boiler in a 10-15 years cycle.

Policies and measures

Policies and measures in comparison


	Germany	Japan
Energy Efficiency Building Code	 Energy performance Requirement (a) new buildings (b) existing buildings undergoing major renovation Renewable Energy Integration and stronger energy efficiency (2022 revision) 2023: Efficiency House 55 Standard 	 Building Energy Conservation Law (updated 2019 and 2021) Mandatory min. Envelope performance Standard average efficiency standard on housing builders. Additional efficiency levels for ZEH/ZEB Level with incentives
Energy Efficiency Certification/Label	Energy Performance Certificate (EPC) Top A+ to Low H for residential - EPC to be shown at sale or lease	Voluntary Energy consumption performance label and Insulation Performance label
Energy Efficiency Standards for Appliances	EU Ecodesign - energy efficiency and recycleability	Top-Runner Program implemented in 1998. Gradually expanded to 29 appliances and 3 building materials, update every few years.
Retrofits Incentives	Federal fund for efficient retrofits, 5 bil. € in 2022, and increased to 12-16 bil.€ in 2023-2026.	Grants for energy efficiency renovations (window, sach, door, insulation, boiler)
Embedded Carbon	Increase of	f wooden materials

Development

Of Energy-saving Construction in Germany

Primary energy need semi-detached house – Heating [kWh/m²a]

Source: Hans Erhorn, Head of Department of Energy Efficiency and Indoor Climate, Fraunhofer IBP

Thomas et al: Comparing buildings policies Germany&Japan

Major policies related to the improvement of the energy performance of buildings: Energy Conservation Law Japan

1979	Energy	Conservation Law
	Envelope Standard	Primary Energy Use Standard
1980	Class 2 Standard	
1992	Class 3 Standard, Heat Loss(Q) and Solar Heat Gain (μ) Coefficient	
1999	Class 4 Standard, adding Air Tightness (C)	
2006		Energy Performance reporting (non-res.,FS>2000m ²)
2009		Energy Performance reporting (non-res. 2,000>FS>300m ²) Top Runner Housing (Built Single Home suppliers)
2013	2013 Standard , Heat Loss (Ua), Solar Heat Gain (ηa) Coefficient	Primary Energy Use Standard, with 8 climate regions
2015	Building Ene	ergy Conservation Law
2016	2016 Standard	Mandatory Energy Performance (non-res.,FS>2000m ²)
2021		Mandatory Energy Performance (non-res.,2,000>FS>300m ²)
2025		Mandatory, all new housing and buildings

Points in common and differences

• Points in common

- Policy package with legal requirements, financial incentives, and information as main elements for buildings
- Appliance MEPS/top runner and labelling
- Objective to increase share of wood in construction

Major differences

- Focus on EE renovation/retrofit in Germany, while so far new build in Japan
- Focus on heating energy savings in Germany, appliances and HEMS/BEMS in Japan
- Later introduction of mandatory new build requirements in Japan, currently less volume of financial incentives, building energy label voluntary in Japan

Recommendations

For further Improvement of the Policy Package in Germany

- need of clear market signals following the so-called "Putin shock" to push investments
- Upgrade or introduce requirements for new built (building shell EH 40, PV obligation)
- Create network of One-stop-shops for building renovation (coordinated advice through whole process, practical support or even implementation)
- reduce demolition rate by setting clear priority on renovation over new built
- set sustainable constructions as standard (integrate LCA-standards into the Building Energy Act)
- increase the ambition level with regard to renovation: serial construction/prefabrication, digitalization, municipal heat planning

GJET

Recommendations

for the further improvement of the policies in Japan

- Target setting and continuous monitoring by the government for the introduction of renewable energy in building
 - The government to set reduction targets of renewables installation on buildings by 2030 and 2050.
 - Monitoring the progress by each municipality and identifying obstacles for further promotion by the government needed.

• Reinforcement of retrofit policies for existing buildings

- Limited consumers who willingly implement energy-saving measures, due to no evaluation for the retrofit cost which can not be recovered at the time of resale.
- As a breakthrough, policy to encourage businesses to implement energy-saving retrofits, by regulating the allocation of the number of new construction sales based on the results of energy-saving retrofits.

Potential for cooperation and further research needs

Conclusion and Outlook

Learnings

Germany/EU can learn from	Japan can learn from Germany:
Japan:	Tighter standards on insulation,
Tighter standards on energy	heat recovery ventilation, and
efficiency and labelling for	renewable energy
some appliances, particularly	incorporations towards
heat pumps/air conditioners	ZEH/ZEB.

Both countries need improvements:

- The target volume of deployment (annual rate of retrofits, phase out fossil fuel boiler, heat pump...)
- Management of building floor spaces and embedded carbon emissions
- A better retrofit market: a transparent certificate
- (EnergyRenovation Passport), One-Stop-Shop service

Possible further Research Areas

- How to make policies for energy efficiency and sufficiency as well as integration of renewable energies and using the flexibility potential more effective?
- Connecting German knowledge on building envelope efficiency and Japanese knowledge on heat pumps and BEMS/HEMS
- A cost-efficient building retrofit technique by connecting German knowledge on building envelope energy efficiency and Japanese experience in serial prefabrication housing
- Combining knowledge from Japan and Germany on the subject of "Building with Wood"

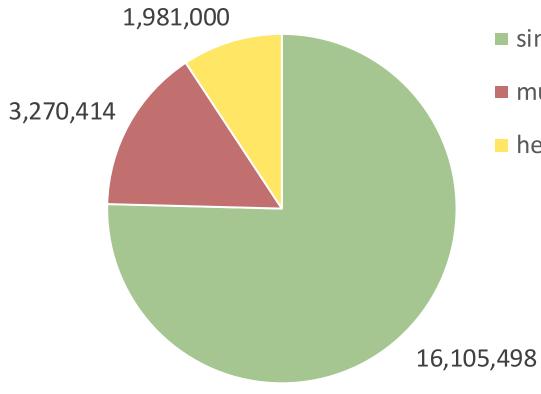
Thank you for your attention

Stefan Thomas, Lotte Nawothnig, Fiona Bunge *Wuppertal Institute (WI)*

Toshiyuki Kudo, Naoko Doi & Toshiya Okamura Institute of Energy Economics Japan (IEEJ)

Manfred Rauschen, Sascha Kunstmann, Jan Karwatzki, Jonas Rütter, Thomas Rühle Öko-Zentrum (ÖZ)

https://gjetc.org



Reserve slides

Country-specific characteristics of the building stock Size, age and growth of the building stock: Germany I

Building stock in Germany 2021

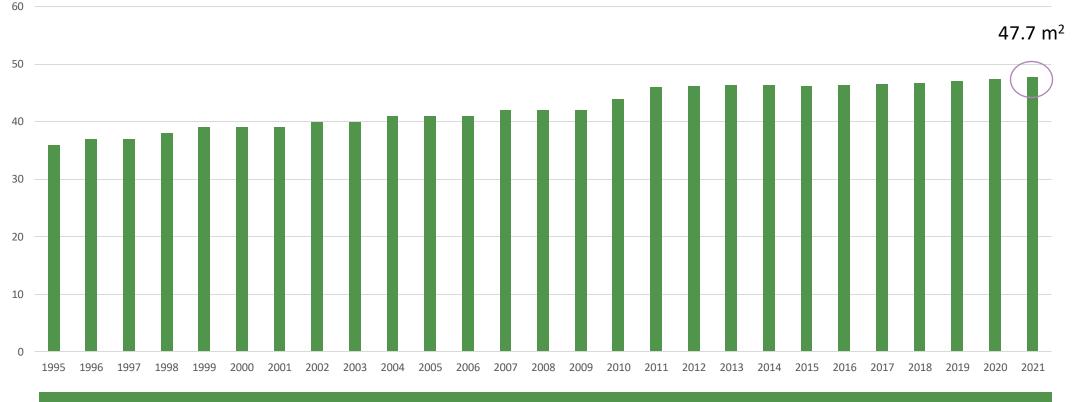
Source: dena 2022, based on Destatis 2022

single- and two-family houses

multi-family houses

heated non-residential buildings

Average size of the dwellings:


- about 119 m² in single- and twofamily houses
- 70 m² in multi-family housings

Country-specific Characteristics of the Building Stock

Size, Age and Growth of the Building Stock: Germany I

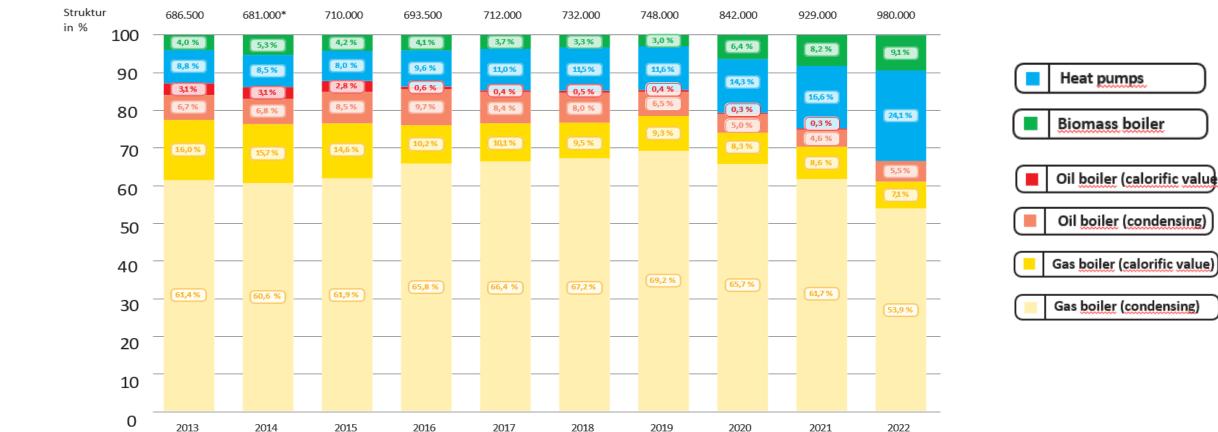
Inhabited floor area/person

→ gradual increase of the size of housings and the per capita floor area from 1990-2009

Source: Destatis 2023

New Buildings

Energy Requirements in Germany


With the coalition agreement and the "relief package" of March 24, 2022, the German government decided to tighten the energy requirements for new buildings in the Building Energy Act (GEG).

Since 2016, new buildings must be constructed in such a way that the primary energy requirement is a maximum of 75% of a reference building.

As of Jan. 1, 2023, the new-build standard was tightened to the previous subsidized standard *Efficient House 55*, but only for the primary energy requirement, not for thermal insulation

Thomas et al: Comparing buildings policies Germany&Japan

Share of heating systems in new residential buildings

New Buildings

Source: BDH 2023

Heating Systems

... to be powered by at least 65% Renewable Energy

From 2024, every newly installed heating system is to be powered by at least 65% renewable energy. **This means:**

- ... in new buildings and when replacing existing heating systems, a renewable heat generator must always be installed for the base load that covers at least 65% of the heat demand.
- ... fossil heat generators may only be used as a supplement for peak loads on particularly cold days.
- ... the standard business of heating engineers (exchange of gas/oil for gas) is no longer permitted.

This also means new challenges:

As early as 2020, there was be a **shortage of around 65,000 skilled craftsmen** in Germany

There is a **high need for qualifications** in renewable energies

Investment decisions for building owners are becoming increasingly complex, so the **need for consultancy** is also rising

Heating Systems

Heating with Renewable Energies

Prioritization of the federal government:

- **1. Environmental heat** (heat pumps)
- 2. Heat networks (district heating)

3. Solar energy (PV, solar

Biomass (wood, biogas):

Solar energy

Some federal states have already imposed obligations to install photovoltaic systems on buildings

Goal for heat pumps

- 6 million heat pumps by 2030
- 12 million heat pumps by 2045

Source: Adobe Stock #178793328 #459057038 #443787611

thermal)

No longer a priority, funding rates have been reduced

Energy standards

GJET **Efficiency house standards: residential building renovation (BEG)**

	Subsidy as loan wi	th repayment subs	idy since 01.01.202	23	
Efficiency house standard	Interest advantage max.	Repayment subsidy	EE class or NH class	WPB-Bonus	SerSan-Bonus
Efficiency house historic building	15 %	5 %	5 %	-	-
Efficiency house 85	15 %	5%	5 %	-	-
Efficiency house 70	15 %	10 %	5 %	10 % (only 70 EE)	-
Efficiency house 55	15 %	15 %	5 %	10 %	15 %
Efficiency house 40	15 %	20 %	5 %	10 %	15 %
Eligible costs max. 120),000 euros per ho	ousing unit, for the	EE class max. 150	,000 euros per ho	using unit.

Financial Incentives For energy-efficient Renovation

Funding for financial incentives and soft loans for the energy efficiency of buildings and the use of renewable heat is provided since ca. 2005

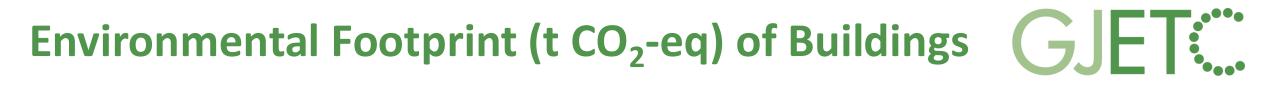
The last major revision of the programs was on 01.07.2021.

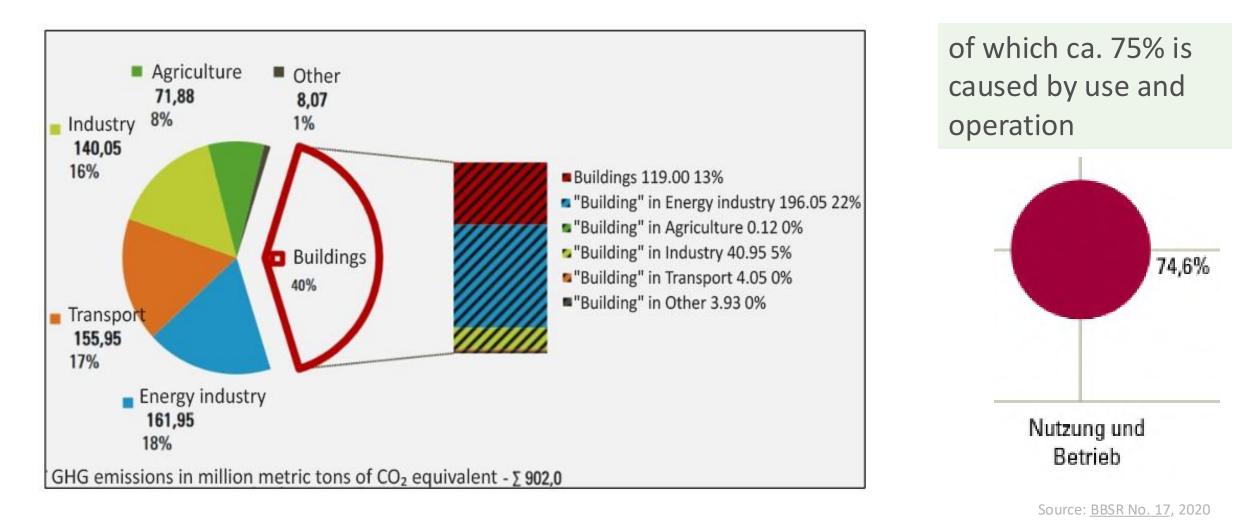
Renovation rate used to be ca. 1 % per year; should accelerate to at least 2 %, better 3 to 4 % per year

Funding focuses on the refurbishment of buildings; little funding is provided for new construction.

The total amount of government spending for these programs used to be around **€2 billion/year** (~2,890億円) and was increased to around **€5 billion/year** (~7,226 億円) in 2021/22 as a countermeasure against the recession caused by Covid-19. The government plans to increase it to **€12-14 billion/year** (~17,343 億円 to ~20,234 億円) in 2023 to 2026.

Financial Incentives


EE and NH Class – Bonus of 5% for Renovation


- The heating and cooling demand of the efficiency house calculated according to GEG must be covered by the use of renewable energies and/or unavoidable waste heat for a minimum share of 65% for the "EE class" (renewable energy class).
- A "NH class" (sustainability class) is achieved when a sustainability certificate is issued for an efficiency house/building by an accredited certification body.

Financial Incentives WPD Bonus and SerSan-Bonus

- A bonus of 10 percentage points is granted for the worst performing buildings in terms of energy efficiency (Worst Performing Building WPB) if they are renovated to the level of Efficiency House 40, 55 or 70 EE. The bonus is cumulative with the EE or NH class. A "NH class" (sustainability class) is achieved when a sustainability certificate is issued for an efficiency house/building by an accredited certification body.
- Serial refurbishment ("SerSan") is the energy-efficient refurbishment of existing buildings using off-site prefabricated facade or roof elements and their installation on existing buildings. The off-site prefabricated elements have such a high degree of prefabrication that the on-site craftsmanship required is significantly reduced compared to conventional refurbishment.

Lifecycle Assessment: Embodied Energy/GWP (t CO₂-eq)

	Prod	duct sta	ge		ruction s stage		l	Use stage	•			End of li	fe stage		Benefits and loads beyond the system boundary
Raw material supply		Transport	Manufacturing	Transport	Construction- installation process	Use	Maintenance	Repair	Replacement	Refurbishment	De-construction demolition	Transport	Waste processing	Disposal	Reuse- Recovery- Recycling - potential
A1		A2	A3	A4	A5	B1	B2	B3	B4	B5	C1	C2	C3	C4	D
						B6	Ор	erational	energy ι	ISe					
						B7	0	perationa	l water u	se					

previously: energy use only for building operation -> GEG (Legal Requirements)

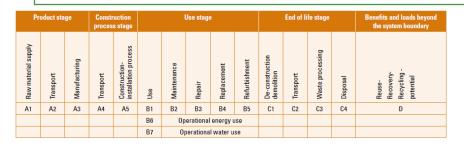
today:

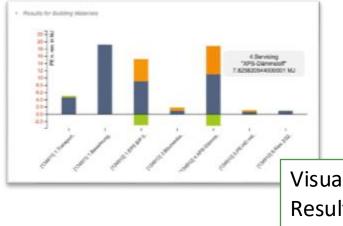
lifecycle assessment including energy use + building materials (production), replacement during
use and waste processing + disposal
-> QNG (state subsidity programs)

Lifecycle Assessment and Embodied Energy

More than 1400
datasets for building
products - EN 15804
compliant

Database Search					The second s		DE EN
atabase search							
	KOBAUDAT according to EN 15804+A2	Additional data					
hese OKOBAUDAT datasets (current rel ompliant with the .Principles for accepta			1 and have been ge	merated based	on GaBi backgrou	und data. All EPI	D datasets are
			AUDAT release is p	ublished appro	c once a year with	the update of the	e generic datasets.
ccepted EPD programme operators can							
ccepted EPD programme operators can In-going minor additions or corrections a							
	re dated and documented in a corr	rection list.	ne Assessment Sys	tem for Sustain	able Building (BNE	3).	
n-going minor additions or corrections a	re dated and documented in a corr 15804+A1 currently serve as mand	rection list.			able Building (BNE	3).	


100 1 03 End of Life / Generisch / No


for building - EN 15804	Natural wood incinention in municipal solid waste plant, wood incinention Wood products incinention in municipal solid waste plant, 11g Flacades - Schnidter Fenster-Fassaden Grebt - IMEF 9353 with Junemon Read windows	en 191 de - en 191 de -	
nt			
		TETA	ſ

0 0 0	6	(8)

Gipskartonplatte (Feuerschutz), 12.50mm (2) Gipskartonplatte (Feuerschutz), 12.50mm Mineralwolle (Innenausbau-Dämmung), 100.00mm Konstruktionsvollholz, 100.00mm OSB (Durchschnitt), 18.00mm Mineralwolle (Fassaden-Dämmung), 180.00mm Konstruktionsvollholz, 180.00mm Mineralwolle (Fassaden-Dämmung), 100.00mn Konstruktionsvollholz, 100.00mm PE-HD mit PP-Vlies zur Abdichtung, 1.00mm Schnittholz Lärche (12% Feuchte/10,7% H2O), 25.00mm Aluminium-Rahmenprofil, pulverbeschichtet, 8.00mm isolierolas 2-Scheiben, 10.00mm

Life cycle modules in accordance with EN 15804. Source: EN 15804

Visualization of **Results for Building** Materials

7 Qctober 2024

software

eLCA

Recommendations

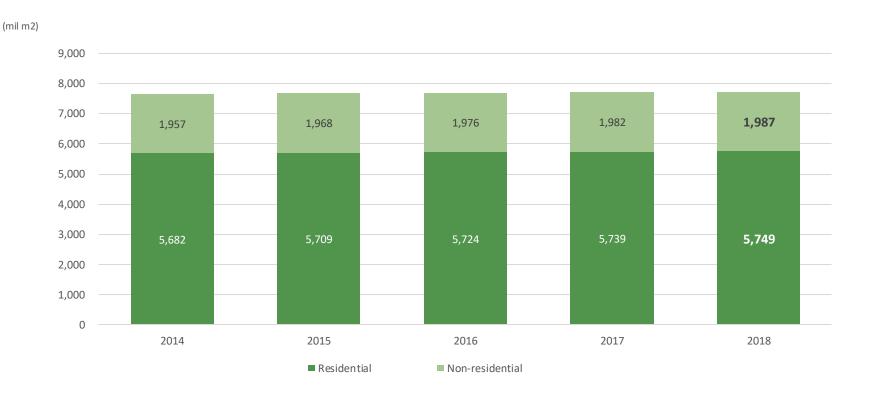
GJET ...

For further Improvement of the Policy Package in Germany

	Stopping growth in floor area	Energy efficiency	Green heat				
Ciunal to market	Sector targets Climate and Energy: Fit for 1,5 degrees						
Signal to market	Targets on maximum floor area	Targets on renovation rate & depth, oil and gas phase out					
Direction 9 Support	Strenghten governance: dena, BfEE, Länder energy agencies						
Direction & Support	Financial support to local one-stop-shops and city district management						
Cost effectiveness	Step up CO2 price faster and further after 2025, use revenues to fund the transition; make price pass-through to tenants depend on energy efficiency standards						
Information basis			on Passports for all buildings er plans for cities/districts				
Standards & Funding	Support remodelling, moving	Min. energy performance standards in existing buildings, KfW40 in new build; funding to make it cost-effective, incl. for tenants					
Infrastructure			heat networks and green feed-in				
Innovation	For example project aggregation, industrial preconstruct support for increase in production						
Capacity	Capacity building, digitalisation and communication campaigns						
Incitement	Demonstration and pilot projects, networking and exchange						

Source: Wuppertal Institute 2022

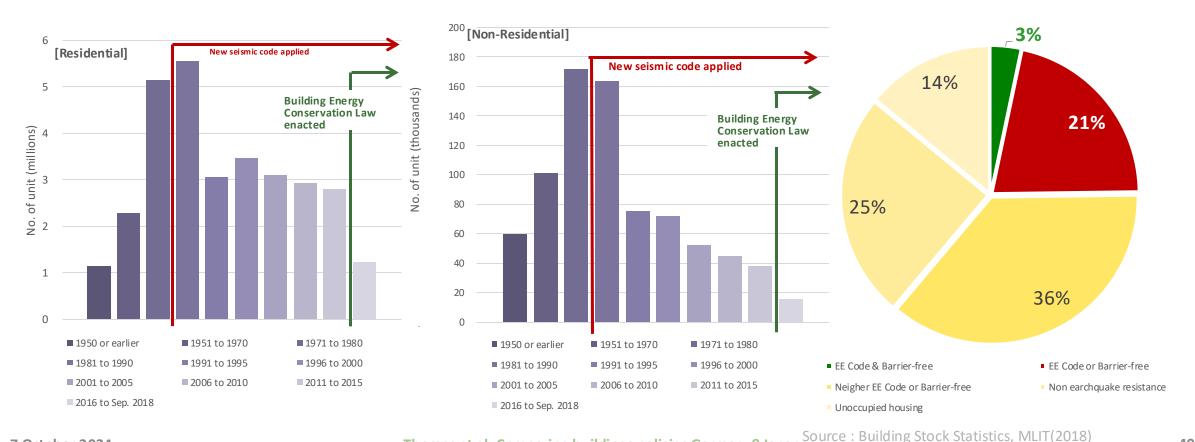
Japan


Building characteristics

Country-specific Characteristics of the Building Stock

Size, Age and Growth of the Building Stock

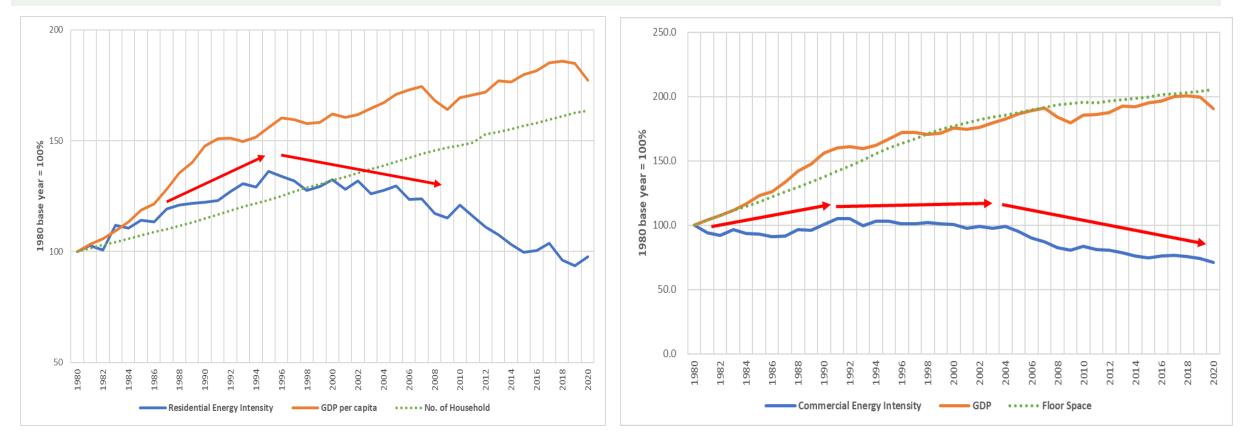
- 7,735 million m2 as the total size of existing buildings in Japan; 74% for residential with 3/4 being single-family homes or row houses, with 60% owner-occupied. Non-residential buildings for 26%, with 30% being schools, government buildings, etc.
- 45.4 m2/capita as the floor space per capita as of FY 2018, rising since 2005 due to the decline in the population.


Source: Building Stock Statistics, MLIT(2018)

Thomas et al: Comparing buildings policies Germany&Japan

Country-specific characteristics of the building stock Size, age and growth of the building stock

- Post WWII new housings in 1950s and 1960s were low quality. The new housing market continued expanding in 1970 and 1980s with the fast economic growth.
- The first earthquake resistance standard took place in 1979 and the energy conservation standard took place in 2015.


Thomas et al: Comparing buildings policies Germany&Japan³

Country-specific Characteristics of the Building Stock

GJET C

Energy Intensity and Consumption

- Energy Intensity (energy intensity) improving in both residential and commercial sectors
- The diffusion of high-efficiency equipment with the introduction of the Top Runner Program, a 1% annual improvement effort target for the commercial sector, and soaring energy prices.

Japan Policies

Major policies related to the improvement of the energy performance of buildings: recent policies

Building Energy Conservation Act (2015) gradually expands to all new buildings and housings

	Building Energy Conservation Act (2015)			2022 Amendment			
	Non Residential	Residential Residential		Non Residential Res			
Large	Mandatory	Performance		Mandatory	Mandatory		
(FS >2,000m ²)	(2017 Apr.)	Reporting		(2017 Apr.)	(2025 Jun.)		
Medium	Mandatory	Performance		Mandatory	Mandatory		
(300 <fs<2000m<sup>2)</fs<2000m<sup>	(2021 Apr.)	Reporting		(2021 Apr.)	(2025 Jun.)		
Small	Advisory notice	Advisory notice		Mandatory	Mandatory		
(FS<300m ²)	required	required		(2025 Jun.)	(2025 Jun.)		

Act on Rationalizing Energy Use ("Energy Conservation Law", 1979")

- The emphasis on promoting energy conservation in the industrial sector at the time of enactment
- Coverage expanded to the business and residential sectors in response to climate change measures and the increasing energy consumption.

Top-Runner Program (1998~)

- Introduced to achieve the target of reducing global warming gas emissions in response to the adoption of the Kyoto Protocol in 1997.
- Major in machinery and appliances (automobiles, home appliances, building materials, etc.). Coverage of about 70% of home appliances and 32 items as of today.
- In 2013, insulation materials and windows (sashes and double-glazing glass) newly added to the scope from the perspective of promoting energy conservation measures in the private sector and quickly stabilizing the supply and demand of electricity.

Major Policies related to the Improvement of the Energy Performance of Buildings: Building Conservation Law

Building Energy Conservation Law (2015)

- Enacted to strengthen drastic energy conservation measures in the building sector, where energy consumption has increased significantly in the wake of the Great East Japan Earthquake and tsunami, which has further strained the energy supply and demand in Japan.
- The following measures introduced to improve the energy efficiency of buildings,
 - 1) Obligation to comply with energy conservation standards for large-scale nonresidential buildings
 - 2) Top Runner Program for resident sector
 - 3) Energy conservation standards compliance labeling system
- Subsequent revisions in 2019 and 2022 and obligation to comply with energy conservation standards and the subject of Top Runner Program expanded.

Major Policies related to the Improvement of the Energy Roadmap for Energy Conservation Measures in Houses and Buildings Toward a Decarbonized Society (2021)

- A joint effort by MLIT, METI and MOE to summarize the basic approach to achieving carbon neutrality by 2050 and how to proceed with the effort.
- Targets at housing and buildings in 2030 and 2050

FY 2030 : Aim to ensure ZEB/ZEH level energy efficiency for new buildings

FY 2050 : Aim to ensure ZEB/ZEH level of energy efficiency and conservation performance on a stock average.

Measures

1 For residential and commercial sectors:

1) Raise the level of energy conservation/volume zone of energy conservation performance/top-up efforts to achieve higher energy conservation performance,

- 2) Strengthen the Top Runner Program for equipment and building materials,
- 3) Energy conservation performance labeling efforts,
- 4) Measure for existing stock

1 For energy transformation sectors: Diffusion of renewable energy

② Sink-feedback measures: Expand use of wood

Major Policies related to the Improvement of the Energy Revision of building-related laws such as the Building Energy Conservation Law (2022)

- The goal to achieve a decarbonized society by introducing renewable energy equipment such as solar panels into buildings and promoting the use of timber, with the expectation of reducing energy consumption by the equivalent of 8.89 million liters by FY2030, compared to FY2013.
- Outline of the revisions
 - 1) Expansion of the scope of application of energy conservation standards: Conformity standards were introduced for new buildings of all sizes, residential and non-residential, for new medium-sized and larger non-residential buildings.
 - 2) Expansion of the scope of the Residential Top Runner Program: In addition to detached houses for sale, custombuilt houses, and rental apartments above a certain level, condominiums for sale will also be covered.
 - **3) Promotion of renewable energy:** Municipalities taking the initiative in designating areas where solar panels and other renewable energy equipment must be installed, and in promoting plans for the introduction of renewable energy, including the types of renewable energy sources.
 - 4) Expanding the use of wood: Fire prevention regulations and structural regulations to be streamlined to promote the increased use of wood as a building material.
 - 5) Establishment of a low-interest loan program for energy-efficient home improvements: no-guarantee/security.

Major policies related to the improvement of the energy performance of buildings: recent policies

Housing Suppliers Top Runner Program will guide to ZEH Level Performances.

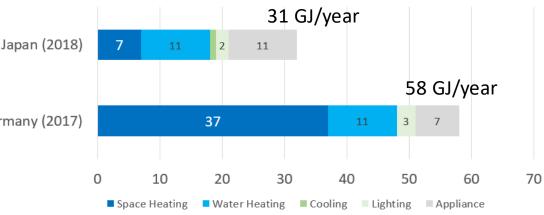
Housing Suppliers	Standard Design Built Detached Homes	Custom Built Detached Homes	Multi Dwelling Apartments (low, lease/owned, wood or steel)	Condominiums (mostly high, owned, steel)			
	Housing Developer >150 units	Constructors > 300 units	Constructors >1,000 units	Constructors >1,000 units			
Envelope	All units must comply the Act requirements						
Primary Energy Reduction	The average reduction of sold units.						
from the Act Requirement (ZEH Level)	another 15%	another 25%	another 10%	another 20%			
Year of Application	From 2020	From 2024	From 2024	From 2026			

Comparison

Building (Housing) Energy Consumption Characteristics

Japan

- a geographical latitude

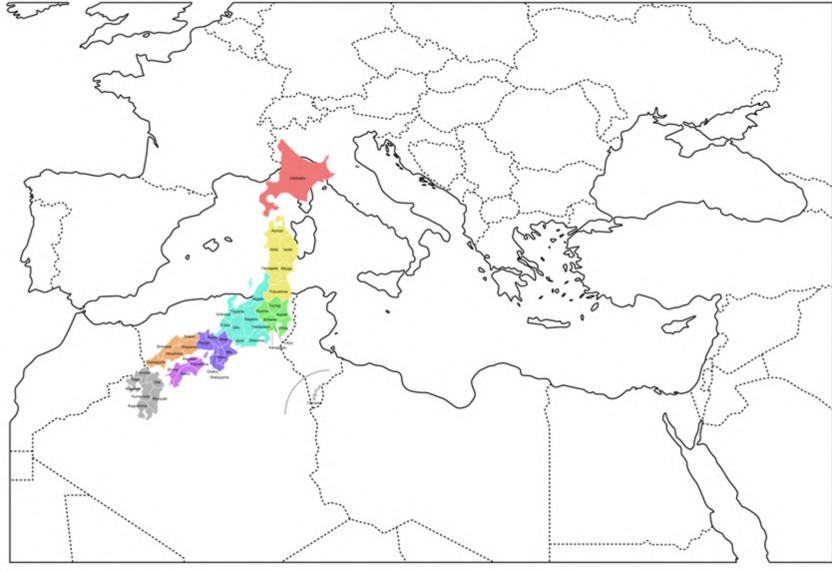

Germany

the typical space heating system

Connonly				Jaha
Berlin Frankfurt Stuttgart	52°.52 N 50°.11 N 48°.77 N		43°.06 N 35°.69 N 34°.69 N	Germar
Central Heating		Partial/ir (occupan conditior	itermittent t rooms) air ning	

In Germany, the improvement of the insulation (of the envelope) of both new and existing buildings is considered important.

In Japan the focus is more on new buildings and the improvement of the energy performance of appliances, although retrofit of insulation to existing buildings would bring benefits too.



Average Energy Consumption Comparison

GJET ...

Comparison

Average Energy Consumption Comparison

Comparison

Building (Housing) Energy Consumption Characteristics

- a geographical latitude

- the typical space heating system

		7				31 GJ/ye	ar			
Germany	Japan	Japan (2018)	7	11	2	11				
Berlin 52°.52 N Frankfurt 50°.11 N Stuttgart 48°.77 N	Sapporo 43°.06 N Tokyo 35°.69 N Osaka 34°.69 N							58 GJ/	'year	
		Germany (2017)			37		11	3 7		
Central Heating	Partial/intermittent (occupant rooms) air conditioning									
		(D	10	20	30	40	50	60	70
			Space	Heating	■ Water H	eating Co	oling L	ighting ■ Ap	pliance	

In Germany, the improvement of the insulation (of the envelope) of both new and existing buildings is considered important.

In Japan the focus is more on new buildings and the improvement of the energy performance of appliances, although retrofit of insulation to existing buildings would bring benefits too.